Energy Efficient Safe SHip OPERAtion

Hull Forces in Calm Water
Krylov / UDE method

Robert Potthoff, Bettar el Moctar

WP2 / WP4 meeting, Duisburg, 17.03.2015
Krylov method

- Based on series of model tests conducted by the Krylov Shipbuilding Research Institute (KSRI)
- Parameters:
 - Main dimensions
 - Speed
 - C_B
 - LCG
 - Trimm
 - Stern shape
Force definition

• Maneuvers
 – Steady drift (drift angle)
 – Steady turn (yaw rate)

• It is assumed that the yaw rate does not contribute to longitudinal and side forces

\[X = 0.5 \ X' \rho v^2 A_{lateral} \quad \text{with} \quad X' = X'_{\beta} \]
\[Y = 0.5 \ Y' \rho v^2 A_{lateral} \quad \text{with} \quad Y' = Y'_{\beta} \]
\[N = 0.5 \ N' \rho v^2 A_{lateral} L_{pp} \quad \text{with} \quad N' = N'_{\beta} + N'_{r} \]
Hydrodynamic coefficients can be calculated using excel sheet or simple python script.

\[X'_{\beta} = -0.075 \sin \left(\left[\pi - \sin^{-1} \left(\frac{X'_0}{0.075} \right) \right] - \frac{\beta}{\varphi_x} \right) \]
\[Y'_{\beta} = 0.5 c_1 \sin 2\beta \cos \beta + c_2 \sin^2 \beta + c_3 \sin^4 2\beta \]
\[N'_{\beta} = m_1 \sin 2\beta + m_2 \sin \beta + m_3 \sin^3 2\beta + m_4 \sin^5 2\beta \]

\[N'_r = -C_{M,0} L_{pp}^2 |r| r - \frac{C_{M,r}}{\pi} \left(v^2 + L_{pp}^2 r^2 \right) \sin(\pi \Omega) \]

\[v^2 \]
UDE modification I

- Longitudinal force calculated according to ITTC’78 and side force contribution

\[X' = R_T \cos \beta - Y \sin \beta \]

- Calm water resistance at zero drift

\[R_T = 0.5 \rho v^2 S C_T \]
\[C_T = (1 + k) C_F + C_W \]

\[C_F = \frac{0.075}{(\log(Rn) - 2)^2} \]

\[C_W \approx 0.2 \cdot C_F \quad \text{for } F_n < 0.25 \]

- If \(k \) unknown:

\[k = \begin{cases}
0.1 & \text{for } C_B \leq 0.7 \\
0.2 & \text{for } 0.7 < C_B \leq 0.8 \\
0.25 & \text{for } C_B > 0.8
\end{cases} \]
• Working on a formulation for Y'_r
Comparison
Esso Osaka Tanker

Drift angle
Comparison
Esso Osaka Tanker

![Graph showing the comparison between model test and Krylov method for yaw rate.](image)

Comparison
Esso Osaka Tanker

![Graph showing the comparison between model test and Krylov method for yaw rate.](image)
Comparison
KVLCC2 Tanker

Drift angle

- Model test
- Krylov method

Hull Forces in Calm Water - KSRI-Method

9 March 2015
Comparison
KVLCC2 Tanker

\[N' \] vs. \(r' \)

- Model test
- Krylov method

Yaw rate
Comparison
KCS Containership

Drift angle

- Y [

- N [

model test
Krylov method
Comparison
KCS Containership

![Graph showing a comparison between model test data and Krylov method results for Hull Forces in Calm Water - KSRI-Method]
Comparison
C-Box (multipurpose ship)

Drift angle

- Drift angle graphs showing model test and krylovDrift method comparison.

9 March 2015 Hull Forces in Calm Water - KSRI-Method
Conclusion

- Fair agreement for Y'_{β} and N_{β}' and N_r'
- X' based on ITTC and UDE results from previous projects
- Y'_{r} to be formulated by UDE